
Architecture Differencing for Self Management
Alexander Egyed

Teknowledge Corporation
4640 Admiralty Way, Suite 1010
Marina Del Rey, CA 90292, USA

+1 310 578 5350

aegyed@acm.org

ABSTRACT
Traditionally, software models are associated with development
and maintenance related activities. This paper demonstrates that
models also serve a vital purpose in supporting the self awareness
and management of software systems in their deployed
environments. We use probes to observe the executing software
system by extracting the outside stimuli the system is subjected to.
We use this information to concurrently simulate the model-
behavior of the software system. The state of the simulating system
then mirrors the state of the executing system. In this setting, the
simulation serves as a foundation to self awareness through which
differences among simulated behavior and real behavior are
investigated. The simulation also serves as a guide to self
management (i.e., self healing, self configuration) where the system
uses additional information provided in the simulating model to
manage itself.

Categories and Subject Descriptors
I.6 [Simulation and Modeling].

Keywords
Architecture differencing, simulation, and reflection.

1. INTRODUCTION
Software models have gained widespread acceptance due to their
ability to support many aspects of software development and
maintenance (e.g., Unified Modeling Language [12]). Yet models
are rarely associated with software deployment. Indeed, we
perceive it as atypically to deploy models with their software
systems. But why shouldn’t we?

Models are a reflection of the software system. They are generally
easier to understand and easier to analyze than the system. Yet
when software systems are deployed in their environment, we do
not leverage from this benefit. This paper describes the use of
model simulation to mirror the execution of the software system in
the deployed environment.

Simulation is the ability to mimic the execution of a software
system. Typically, simulation will not mimic every detail of the
system but instead focus on some technical aspect of relevance.
This paper investigates how software understanding benefits from

simulation and how the system can piggyback from the simulation
to support its own self-awareness and self management.

in out
System

responsestimuli
Figure 1. The Stimuli and Responses of Software Systems

In the following, we presume that the software system is a
predominantly reactive system that responds to external stimuli.
Most applications built today are reactive systems that consume
external stimuli to trigger internal activities. For instance,
applications with graphical user interfaces are reactive systems that
consume mouse clicks or keyboard strokes. Reactive systems may
be understood in terms of the stimuli they accept and the
responses they generate (Figure 1).

We present an approach to architecture differencing for self-
awareness and self-management. We need a simulatable model that
can be used to mirror the deployed system. Real stimuli (obtained
by instrumenting the actual system and abstracting and filtering the
information) are supplied to guide the simulation. The model
simulation is then a reflection of the state and behavior of the
executing system and they are both expected to respond
equivalently given the same input stimuli. If they do not respond
equivalently then the model behavior differs from the system
behavior. During design time, this knowledge is used to reason
about the consistency between the model and system. Once the
“correctness” of the model is established then our approach is
deployed with the software system to determine disallowed
behavioral differences between the model and the system in the
deployed environment. Since the model is then presumed correct
and complete, a difference indicates abnormal system behavior
caused by fault, attack, or improper use. Moreover, once a
difference between system and model is detected, a self
healing/management mechanism may use the model as a guide to
elicit what should have been the correct behavior and then use the
discrepancy between system behavior and model behavior to
reason about a proper response (i.e., healing, re-configuration).

Section 2 discusses model reflection to mirror the software system
with a simulating model. Section 3 discusses model differencing to
identify inconsistencies between the responses of the system and
the model. Section 4 discusses the use of reflection and
differencing for self awareness and self management.

2. VIDEO-ON-DEMAND CASE STUDY
We demonstrate our approach on a video-on-demand player
(VOD) developed by [3]. The VOD player is a movie player that
searches for movies on a server, downloads them, and plays them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WOSS’04 Oct 31-Nov 1, 2004 Newport Beach, CA, USA
Copyright 2004 ACM 1-58113-989-6/04/0010…$5.00.

Proceedings of the 2nd Workshop on Self-Managed Systems, co-located with FSE 2004, Newport Beach,
CA, November 2004

The “on-demand” feature of the player allows the playing of a
movie concurrently while downloading its data from a remote site.
The VOD system was modeled in SDSL [4] which is a statechart-
like language [6,9] we developed previously (details of the language
are omitted here for brevity).

stimuli

User
Interface

VOD
System

response

Figure 2. VOD Player (system) interacting with UI

The VOD Player receives external stimuli through the user interface
and it responds by displaying movies to the user via the same user
interface (UI) – see Figure 2.

3. REFLECTION
The VOD Player, like most systems, is reactive by acting and
reacting solely on external stimuli (i.e., user input). If the model
correctly describes the software system then both, the player’s
execution (real system) and the model’s simulation, behave
equivalently if they receive the same external stimuli (user input) at
the same time. In other words, both generate the same responses
to the same input. We differentiate between model reflection and
system reflection where the former captures the behavior of the
model simulation and the latter captures the behavior of the system
execution (see Figure 3).

Some simulators assume a “closed world” where the simulated
stimuli must be pre-defined. This is impractical and we thus rely on
“open simulation” where the stimuli are provided externally during
simulation. The ideal source of the simulated stimuli is the real
stimuli itself but how do we observe these stimuli?

We use instrumentation to intercept the stimuli of the executing
system. We previously developed wrapper technology [1] to
monitor any system’s interaction with the outside world [3]. We
consider this and other existing technologies to be “probes” that
are deployed within the executing system to monitor it. However,

the system’s stimuli are typically in a lower level of granularity and
abstraction than needed for the simulation. Fortunately, it is much
easier to abstract low-level, system stimuli into high level, model
stimuli than the other way around because the abstraction is usually
a simplification process. We thus filter, aggregate, and otherwise
translate real stimuli into simulated stimuli.

Real
Responses

Simulated
Responses

Simulated Environment (Model)

in

in'

out

out'

Translator

in out

Simulated
System

Real System

Real Environment (Deployment)

Figure 3. Model Reflection through Probes and Translation

The executed system is thus executed within its environment where
it is subjected to external stimuli (i.e., user input). Through probes
and translators, the system’s stimuli are instantly forwarded to the
simulation and its simulating model. The simulating model is thus
given the same input the executing system receives. As a
consequence, the simulating model mirrors the behavior of the
executing system in that their states and responses are similar (we
discuss later why their responses are allowed to differ). In itself,
this is a useful capability for the understanding of a deployed
software system because a human observer can use the simulation
as a “window into the system” to better observe the not-so-
observable system.

Based on the same instrumentation technology, we also intercept
and translate the responses of the real system. Figure 4 (left)
depicts the observed stimuli and responses of the real VOD player
(note: we use UML sequence diagrams here [9]). In this scenario,

outside player outside

?DISPLAY_MOVIE_LIST

?SELECT_MOVIE

?PLAY

?PAUSE

SHOW_FRAME

SHOW_FRAME

SHOW_FRAME

SHOW_FRAME

outside player1 :
VODPlayer

movieListServer :
ClientHandler

streamer :
MovieStreamer

httpserver :
HTTPServer

outside

?DISPLAY_MOVIE_LIST

REQUEST_MOVIE_LIST

?SELECT_MOVIE
REQUEST_MOVIE_INFO

LIST_OF_MOVIES

INFO_OF_MOVIE

CONSTRUCT

WAIT

?PLAY
STREAM

FIND_INSTANCE

REQUEST_PICTURE

REQUEST_PICTURE

?PAUSE
WAIT

NEW_PICTURE

NEW_PICTURE

SHOW_FRAME

SHOW_FRAME

Real System, Stimuli, and Responses Model System, Stimuli, and Responses

Figure 4. Real System, Stimuli, and Responses (left) and Model System, Stimuli, and Responses (right)

the user initially asks for a
list of all movies, then
selects a movie from the list,
plays it, and pauses it.
Figure 4 (left) depicts these
stimuli and the
corresponding responses
after translation. For
example, the user click on
the button “Movies” is
translated into the event
“?DISPLAY_MOVIE_LIS
T. Figure 4 (left) also
depicts the response of the
player in that only after
successful movie selection
the play button will result in
periodic “SHOW_FRAME”
events until the pause button
is pressed.

Figure 4 (right) depicts the
corresponding stimuli and
responses of the simulated system. Of course, the stimuli are
identical with the real system because they where generated from it
but we observe that the simulation is much more detailed in terms
of what happens inside the VOD player. The VOD player consists
of some 20 classes and its model identifies six components. Since
we did not instrument all classes, we do not know what happened
inside the real system yet the simulator is readily observable. Figure
4 (right) thus depicts all interactions among four of the six
simulating components in this scenario.

4. MODEL DIFFERENCING
The goal of the model differencer is to detect whether the behavior
of the real system differs from the behavior of the model
simulation. To that end, the differencer compares their responses.
Model differencing is simply the comparison of the observed
system responses with the generated simulation responses (i.e., the
model and system stimuli need not be compared because the one
is derived from the other). However, to ease the comparison, we
translate the system responses into model responses much like we
translated the system stimuli into model stimuli (see Figure 5).

Real
Responses

Simulated
Responses

List of
Conflicts

Reflection

Differencer

Fi
lte

r

Figure 5. Model Differencing through Observed and
Simulated Responses

Ideally, the system responses (in model form) and the simulation
responses should be identical. However, we found that the
simulation often is in more detail than what is generally observed
from the system. In this case, it is necessary to filter the responses.
For example, in Figure 4 (left), the real system is subjected to the

“?DISPLAY_MOVIE_LIST” stimuli with no response from the
system. However, looking at Figure 4 (right), we find that the
simulated model engages in a series of interactions in response to
the stimuli. These interactions are internal to the system and
observable in the simulation but not in the system.

Of course, the executing system also undergoes these internal
activities but in this case the internal activities are not observable
(e.g., no probes were implemented). Therefore, we have to be
careful to only compare responses that are observed by both the
simulation and the execution. Therefore, the first task of
differencing is to filter the observed responses such that the:

1) interactions between internal components are ignored
2) interactions between component and outside are preserved

Figure 6 (right) depicts the filtered stimuli and responses of the
model simulation. It is now readily comparable with the stimuli and
responses of the real system (again depicted in Figure 6 (left)).
Ideally, the responses of the filtered model and the real system
should be identical. For example, the system responds to the
PLAY event with a SHOW_FRAME event. We observe that the
simulation behaves consistently. However, we also observe that the
number of SHOW_FRAME events differs. This difference does
not imply an error as there are several permissible exceptions:

• timing difference: simulation and execution likely differ in
speed and thus responses are at different times (e.g., first
SHOW_FRAME event occurs at a slightly different time).

• count difference: the number of responses may differ in case
of periodic activity because of different simulation/execution
speed (e.g., four SHOW_FRAME events in the system
instead of two events in the simulation).

• ordering difference: concurrently executing components may
produce certain events in a slightly different order (no
example here) because of execution/simulation speed
differences among the components.

In summary, there are cases where the simulation generates
responses quicker than the executing system and vice versa. The

outside player outside

?DISPLAY_MOVIE_LIST

?SELECT_MOVIE

?PLAY

?PAUSE

SHOW_FRAME

SHOW_FRAME

SHOW_FRAME

SHOW_FRAME

Real System, Stimuli, and Responses

outside player1 :
VODPlayer

outside

?DISPLAY_MOVIE_LIST

?SELECT_MOVIE

?PLAY

?PAUSE SHOW_FRAME

SHOW_FRAME

Filtered, Model System, Stimuli, and Responses

 t

4 events
2 events

ntime t1

time t2

Figure 6. Comparable Real and Model System, Stimuli, and Responses after Aggregation

difference in the speed of the execution and the simulation has to
be taken under consideration during differencing to not identify
false differences.

While there are acceptable differences, other difference are signs of
error (e.g., out of time, out of order, count violation). These
unacceptable differences either imply an incorrect model (e.g., if
differencing was used to test the correctness of the model) or an
incorrect system (e.g., the system does not behave as predicted in
the model). Either way, these differences require action in
correcting the model or the system (or both).

If only count and timing differences have to be considered then the
algorithm for differencing is straightforward. Dealing with the
ordering difference is more difficult. We have not yet developed a
generic solution for the latter.

5. SELF MANAGEMENT
During design time, the purpose of differencing is in detecting
inconsistencies between the model and the system and correcting
the inconsistencies (either by updating the model or the system).
This obviously benefits the needs of the software developer and
maintainer. However, reflection and differencing are also useful to a
system’s self management during run time. In a deployed
environment we presume that the system completely and
consistency implements the model. In this case, a difference
between the model behavior and the system behavior indicates
system abnormality (e.g., fault, attack, misuse).

WOSS defines the self management as systems with the “ability to
adapt themselves at run time to handle such things as resource
variability, changing user needs, and system faults.” Such ability
requires a self reflection in that the system must understand itself
and, perhaps, its environment. Model reflection provides the
foundation for this self awareness because, at any given time, the
system can consult the simulating model about its current state.
The simulating model also reflects the system from a perspective
that may be more suitable for self awareness as it is in a model
form (or at the very least it provides an alternative perspective in
addition to its own system reflection).

For self management, the model reflection is also a beacon of
correctness when the system fails. If the system behavior differs
from the model behavior due to error or attack then the model
reflection reveals the presumed correct system state. The system
can then engage in corrective actions (i.e., self healing) with the
benefit of this additional knowledge (i.e., the actual difference
between “is” and “should be”). Of course, if the model is incorrect
then our approach fails as it may provide incorrect information
about self management. Thus, the consistency and completeness
of the model must be validated beforehand which can be done
through differencing and exhaustive testing.

While we believe that it is not easy to re-configure a system to a
state that is consistent with the model (the presumed correct state),
we believe that it is easier to so than trying to recover the system
without the knowledge of the presumed correct state (i.e., during

Simulating components

Outside stimuli

Parameter for stimuli

Progress/state visualization

Figure 7. SDSL Langauge (bottom) visualized in IBM Rational Rose and Simulator (top)

rollback and rollforward). Yet, we have not conducted analyses to
support this claim. We do believe, however, that “model-driven
self management” may complement other self management
activities that, perhaps, include system information. For example, a
combination of model-driven and system-driven self management
may be a reasonable approach where the model reflection is used
to guide the self healing of a system and necessary low-level
information is recovered from the system itself. For example, MS
Word has a recovery method that saves all document data during a
crash and re-initiates a new instance of MS Word with the
recovered data immediately thereafter. While the recovery action
could be model guided, the data needed to do so could be
recovered from the system as is done in MS Word. We intent to
investigate this and related issues.

There is also a benefit in describing self management in terms of
the model where self management activities are included in the
model. For example, it is possible to create a mapping table that
describes in advance the differences that can occur between the
model and the system. This mapping table then recommends self
management steps to correct differences. Or, the model simply
includes information about self management that are triggered
during the simulation. The system then not only looks at the model
for its reflection and differencing but also for guidance to its self
management. We have implemented some of these capabilities [10]
but more research is needed.

6. ISSUES AND CONCLUSIONS
Differencing and self management requires a simulatable,
behavioral model. We believe that our approach is open to a wide
range of architecture and design models [5,7,8] but, thus far, we
only used a language called SDSL (Statecharts for Dynamic
Systems Language) [4]. SDSL retains the look-and-feel of Harel’s
statecharts but unlike Statecharts, SDSL can model dynamic
constructs such as remote method invocation, component
construction & destruction, late binding, introspection, or instance
localization.

SDSL was built by us with the primary goal of providing a
dynamic language that can be simulated. We therefore built a
simulation tool that takes SDSL specifications (as created
graphically in IBM Rational Rose) to animate them. We then
extended the simulator, called SDS Simulator, to accept external
stimuli of the kind a real system is able to accept (i.e., user input).
Figure 7 depicts the simulator during the simulation of the VOD.

To test the simulation language we validated it on several real
software systems (e.g., video-on-demand software system [2],
OASIS). We then coupled the simulator with the execution of the
real systems. In most cases, instrumenting the source code of the
real systems was sufficient. The probes intercepted the external
stimuli of the executing systems, translated them, and projected
those stimuli onto the simulation of their models. We found it
highly beneficial to use the simulation to ‘spy’ into the executing
system to observe its behavior. Even without the differencer, we
found it very useful to detect inconsistencies.

The reflection and the differencer are not implemented yet although
a crude prototype exists. The major issue we foresee is how to
model the allowed differences (timing differences, count
differences, and ordering differences) that may vary across

applications and, even, within applications. We believe that we
need to augment SDSL to include allowed differences into the
model. The differencer would then use this information.

We have applied the SDSL modeling and simulation capability (an
earlier version) onto a self healing project [10] where the simulation
modeled the system’s behavior and its healing activities. There we
demonstrated that it is feasible to use a model as a decision maker
for a deployed system. Our findings are preliminary but
encouraging.

It is future work to investigate how to incorporate the environment
(context) into the model. Also, we intend to investigate how well a
system can manage itself based on model information (the model is
an abstraction and may not provide all needed information for self
management).

7. ACKNOWLEDGMENTS
Our thanks Bob Balzer, Dave Wile, and the anonymous reviewers
for insightful discussions. This work was funded by DARPA
AWDRAT under the subaward agreement No. 5710001719, AFRL
Cooperative Agreement No. FA8750-04-2-0240.

8. REFERENCES
[1] Balzer, R. and Goldman, N.: “Mediating Connectors: A Non-

ByPassable Process Wrapping Technology,” Proceedings of
the DARPA DISCEX Conference, Hilton Head, South
Carolina, January 2000, pp.361-368.

[2] Dohyung, K.: “Java MPEG Player,”
http://peace.snu.ac.kr/dhkim/java/MPEG/, 1999.

[3] Egyed, A. and Balzer, R.: “Unfriendly COTS Integration –
Instrumentation and Interfaces for Improved Plugability,”
Proceedings of the 16th IEEE International Conference on
Automated Software Engineering (ASE), San Diego, USA,
November 2001.

[4] Egyed, A. and Wile, D.: “Statechart Simulator for Modeling
Architectural Dynamics,” Proceedings of the 2nd Working
International Conference on Software Architecture (WICSA),
August 2001, pp.87-96.

[5] Garlan, D., Monroe, R., Wile, D.: Architectural Descriptions
of Component-Based Systems, In Foundations of
Component-Based Systems by Gary Leavens and Murali
Sitaramam, eds. Kluwer, 2000.

[6] Harel D.: Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming 8, 1987.

[7] Magee, J. and Kramer, J.: “Dynamic Structure in Software
Architectures,” Proceedings of the 4th ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
October 1996.

[8] Oriezy P. and Taylor R. N.: On the role of software
architectures in runtime system reconfiguration. IEE
Proceedings – Software 145(5), 1998, 137-145 .

[9] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified
Modeling Language Reference Manual. Addison Wesley,
1999.

[10] Wile, D. S. and Egyed, A.: “An Architectural Style for Self
Healing Systems,” Proceedings of the 4th Working IEEE /
IFIP Conference on Software Architecture (WICSA), Oslo,
Norway, June 2004, pp.285-290.

