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ABSTRACT 
Traditionally, software models are associated with development 
and maintenance related activities. This paper demonstrates that 
models also serve a vital purpose in supporting the self awareness 
and management of software systems in their deployed 
environments. We use probes to observe the executing software 
system by extracting the outside stimuli the system is subjected to. 
We use this information to concurrently simulate the model-
behavior of the software system. The state of the simulating system 
then mirrors the state of the executing system. In this setting, the 
simulation serves as a foundation to self awareness through which 
differences among simulated behavior and real behavior are 
investigated. The simulation also serves as a guide to self 
management (i.e., self healing, self configuration) where the system 
uses additional information provided in the simulating model to 
manage itself. 

Categories and Subject Descriptors 
I.6 [Simulation and Modeling]. 

Keywords 
Architecture differencing, simulation, and reflection. 

1. INTRODUCTION 
Software models have gained widespread acceptance due to their 
ability to support many aspects of software development and 
maintenance (e.g., Unified Modeling Language [12]). Yet models 
are rarely associated with software deployment. Indeed, we 
perceive it as atypically to deploy models with their software 
systems. But why shouldn’t we? 

Models are a reflection of the software system. They are generally 
easier to understand and easier to analyze than the system. Yet 
when software systems are deployed in their environment, we do 
not leverage from this benefit. This paper describes the use of 
model simulation to mirror the execution of the software system in 
the deployed environment.  

Simulation is the ability to mimic the execution of a software 
system. Typically, simulation will not mimic every detail of the 
system but instead focus on some technical aspect of relevance. 
This paper investigates how software understanding benefits from 

simulation and how the system can piggyback from the simulation 
to support its own self-awareness and self management.  
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Figure 1. The Stimuli and Responses of Software Systems 

In the following, we presume that the software system is a 
predominantly reactive system that responds to external stimuli. 
Most applications built today are reactive systems that consume 
external stimuli to trigger internal activities. For instance, 
applications with graphical user interfaces are reactive systems that 
consume mouse clicks or keyboard strokes. Reactive systems may 
be understood in terms of the stimuli they accept and the 
responses they generate (Figure 1). 

We present an approach to architecture differencing for self-
awareness and self-management. We need a simulatable model that 
can be used to mirror the deployed system. Real stimuli (obtained 
by instrumenting the actual system and abstracting and filtering the 
information) are supplied to guide the simulation. The model 
simulation is then a reflection of the state and behavior of the 
executing system and they are both expected to respond 
equivalently given the same input stimuli. If they do not respond 
equivalently then the model behavior differs from the system 
behavior. During design time, this knowledge is used to reason 
about the consistency between the model and system. Once the 
“correctness” of the model is established then our approach is 
deployed with the software system to determine disallowed 
behavioral differences between the model and the system in the 
deployed environment. Since the model is then presumed correct 
and complete, a difference indicates abnormal system behavior 
caused by fault, attack, or improper use. Moreover, once a 
difference between system and model is detected, a self 
healing/management mechanism may use the model as a guide to 
elicit what should have been the correct behavior and then use the 
discrepancy between system behavior and model behavior to 
reason about a proper response (i.e., healing, re-configuration). 

Section 2 discusses model reflection to mirror the software system 
with a simulating model. Section 3 discusses model differencing to 
identify inconsistencies between the responses of the system and 
the model. Section 4 discusses the use of reflection and 
differencing for self awareness and self management. 

2. VIDEO-ON-DEMAND CASE STUDY 
We demonstrate our approach on a video-on-demand player 
(VOD) developed by [3]. The VOD player is a movie player that 
searches for movies on a server, downloads them, and plays them. 
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The “on-demand” feature of the player allows the playing of a 
movie concurrently while downloading its data from a remote site. 
The VOD system was modeled in SDSL [4] which is a statechart-
like language [6,9] we developed previously (details of the language 
are omitted here for brevity).  
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Figure 2. VOD Player (system) interacting with UI 

The VOD Player receives external stimuli through the user interface 
and it responds by displaying movies to the user via the same user 
interface (UI) – see Figure 2.  

3. REFLECTION 
The VOD Player, like most systems, is reactive by acting and 
reacting solely on external stimuli (i.e., user input). If the model 
correctly describes the software system then both, the player’s 
execution (real system) and the model’s simulation, behave 
equivalently if they receive the same external stimuli (user input) at 
the same time. In other words, both generate the same responses 
to the same input. We differentiate between model reflection and 
system reflection where the former captures the behavior of the 
model simulation and the latter captures the behavior of the system 
execution (see Figure 3).  

Some simulators assume a “closed world” where the simulated 
stimuli must be pre-defined. This is impractical and we thus rely on 
“open simulation” where the stimuli are provided externally during 
simulation. The ideal source of the simulated stimuli is the real 
stimuli itself but how do we observe these stimuli? 

We use instrumentation to intercept the stimuli of the executing 
system. We previously developed wrapper technology [1] to 
monitor any system’s interaction with the outside world [3].  We 
consider this and other existing technologies to be “probes” that 
are deployed within the executing system to monitor it. However, 

the system’s stimuli are typically in a lower level of granularity and 
abstraction than needed for the simulation. Fortunately, it is much 
easier to abstract low-level, system stimuli into high level, model 
stimuli than the other way around because the abstraction is usually 
a simplification process. We thus filter, aggregate, and otherwise 
translate real stimuli into simulated stimuli. 
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Figure 3. Model Reflection through Probes and Translation 

The executed system is thus executed within its environment where 
it is subjected to external stimuli (i.e., user input). Through probes 
and translators, the system’s stimuli are instantly forwarded to the 
simulation and its simulating model. The simulating model is thus 
given the same input the executing system receives. As a 
consequence, the simulating model mirrors the behavior of the 
executing system in that their states and responses are similar (we 
discuss later why their responses are allowed to differ). In itself, 
this is a useful capability for the understanding of a deployed 
software system because a human observer can use the simulation 
as a “window into the system” to better observe the not-so-
observable system. 

Based on the same instrumentation technology, we also intercept 
and translate the responses of the real system. Figure 4 (left) 
depicts the observed stimuli and responses of the real VOD player 
(note: we use UML sequence diagrams here [9]). In this scenario, 
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Figure 4. Real System, Stimuli, and Responses (left) and Model System, Stimuli, and Responses (right) 



the user initially asks for a 
list of all movies, then 
selects a movie from the list, 
plays it, and pauses it. 
Figure 4 (left) depicts these 
stimuli and the 
corresponding responses 
after translation. For 
example, the user click on 
the button “Movies” is 
translated into the event 
“?DISPLAY_MOVIE_LIS
T. Figure 4 (left) also 
depicts the response of the 
player in that only after 
successful movie selection 
the play button will result in 
periodic “SHOW_FRAME” 
events until the pause button 
is pressed. 

Figure 4 (right) depicts the 
corresponding stimuli and 
responses of the simulated system. Of course, the stimuli are 
identical with the real system because they where generated from it 
but we observe that the simulation is much more detailed in terms 
of what happens inside the VOD player. The VOD player consists 
of some 20 classes and its model identifies six components. Since 
we did not instrument all classes, we do not know what happened 
inside the real system yet the simulator is readily observable. Figure 
4 (right) thus depicts all interactions among four of the six 
simulating components in this scenario.  

4. MODEL DIFFERENCING 
The goal of the model differencer is to detect whether the behavior 
of the real system differs from the behavior of the model 
simulation. To that end, the differencer compares their responses. 
Model differencing is simply the comparison of the observed 
system responses with the generated simulation responses (i.e., the 
model and system stimuli need not be compared because the one 
is derived from the other). However, to ease the comparison, we 
translate the system responses into model responses much like we 
translated the system stimuli into model stimuli (see Figure 5).  
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Figure 5. Model Differencing through Observed  and 
Simulated Responses 

Ideally, the system responses (in model form) and the simulation 
responses should be identical. However, we found that the 
simulation often is in more detail than what is generally observed 
from the system. In this case, it is  necessary to filter the responses. 
For example, in Figure 4 (left), the real system is subjected to the 

“?DISPLAY_MOVIE_LIST” stimuli with no response from the 
system. However, looking at Figure 4 (right), we find that the 
simulated model engages in a series of interactions in response to 
the stimuli. These interactions are internal to the system and 
observable in the simulation but not in the system. 

Of course, the executing system also undergoes these internal 
activities but in this case the internal activities are not observable 
(e.g., no probes were implemented). Therefore, we have to be 
careful to only compare responses that are observed by both the 
simulation and the execution. Therefore, the first task of 
differencing is to filter the observed responses such that the: 

1) interactions between internal components are ignored 
2) interactions between component and outside are preserved 

Figure 6 (right) depicts the filtered stimuli and responses of the 
model simulation. It is now readily comparable with the stimuli and 
responses of the real system (again depicted in Figure 6 (left)). 
Ideally, the responses of the filtered model and the real system 
should be identical. For example, the system responds to the 
PLAY event with a SHOW_FRAME event. We observe that the 
simulation behaves consistently. However, we also observe that the 
number of SHOW_FRAME events differs. This difference does 
not imply an error as there are several permissible exceptions: 

• timing difference: simulation and execution likely differ in 
speed and thus responses are at different times (e.g., first 
SHOW_FRAME event occurs at a slightly different time). 

• count difference: the number of responses may differ in case 
of periodic activity because of different simulation/execution 
speed (e.g., four SHOW_FRAME events in the system 
instead of two events in the simulation). 

• ordering difference: concurrently executing components may 
produce certain events in a slightly different order (no 
example here) because of execution/simulation speed 
differences among the components. 

In summary, there are cases where the simulation generates 
responses quicker than the executing system and vice versa. The 
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Figure 6. Comparable Real and Model System, Stimuli, and Responses after Aggregation 



difference in the speed of the execution and the simulation has to 
be taken under consideration during differencing to not identify 
false differences.  

While there are acceptable differences, other difference are signs of 
error (e.g., out of time, out of order, count violation). These 
unacceptable differences either imply an incorrect model (e.g., if 
differencing was used to test the correctness of the model) or an 
incorrect system (e.g., the system does not behave as predicted in 
the model). Either way, these differences require action in 
correcting the model or the system (or both).  

If only count and timing differences have to be considered then the 
algorithm for differencing is straightforward. Dealing with the 
ordering difference is more difficult. We have not yet developed a 
generic solution for the latter. 

5. SELF MANAGEMENT 
During design time, the purpose of differencing is in detecting 
inconsistencies between the model and the system and correcting 
the inconsistencies (either by updating the model or the system). 
This obviously benefits the needs of the software developer and 
maintainer. However, reflection and differencing are also useful to a 
system’s self management during run time. In a deployed 
environment we presume that the system completely and 
consistency implements the model. In this case, a difference 
between the model behavior and the system behavior indicates 
system abnormality (e.g., fault, attack, misuse).  

WOSS defines the self management as systems with the “ability to 
adapt themselves at run time to handle such things as resource 
variability, changing user needs, and system faults.” Such ability 
requires a self reflection in that the system must understand itself 
and, perhaps, its environment. Model reflection provides the 
foundation for this self awareness because, at any given time, the 
system can consult the simulating model about its current state. 
The simulating model also reflects the system from a perspective 
that may be more suitable for self awareness as it is in a model 
form (or at the very least it provides an alternative perspective in 
addition to its own system reflection).  

For self management, the model reflection is also a beacon of 
correctness when the system fails. If the system behavior differs 
from the model behavior due to error or attack then the model 
reflection reveals the presumed correct system state. The system 
can then engage in corrective actions (i.e., self healing) with the 
benefit of this additional knowledge (i.e., the actual difference 
between “is” and “should be”). Of course, if the model is incorrect 
then our approach fails as it may provide incorrect information 
about self management. Thus, the consistency and completeness 
of the model must be validated beforehand which can be done 
through differencing and exhaustive testing. 

While we believe that it is not easy to re-configure a system to a 
state that is consistent with the model (the presumed correct state), 
we believe that it is easier to so than trying to recover the system 
without the knowledge of the presumed correct state (i.e., during 
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Figure 7. SDSL Langauge (bottom) visualized in IBM Rational Rose and Simulator (top) 



rollback and rollforward). Yet, we have not conducted analyses to 
support this claim. We do believe, however, that “model-driven 
self management” may complement other self management 
activities that, perhaps, include system information. For example, a 
combination of model-driven and system-driven self management 
may be a reasonable approach where the model reflection is used 
to guide the self healing of a system and necessary low-level 
information is recovered from the system itself. For example, MS 
Word has a recovery method that saves all document data during a 
crash and re-initiates a new instance of MS Word with the 
recovered data immediately thereafter. While the recovery action 
could be model guided, the data needed to do so could be 
recovered from the system as is done in MS Word. We intent to 
investigate this and related issues.  

There is also a benefit in describing self management in terms of 
the model where self management activities are included in the 
model. For example, it is possible to create a mapping table that 
describes in advance the differences that can occur between the 
model and the system. This mapping table then recommends self 
management steps to correct differences. Or, the model simply 
includes information about self management that are triggered 
during the simulation. The system then not only looks at the model 
for its reflection and differencing but also for guidance to its self 
management. We have implemented some of these capabilities [10] 
but more research is needed. 

6. ISSUES AND CONCLUSIONS 
Differencing and self management requires a simulatable, 
behavioral model. We believe that our approach is open to a wide 
range of architecture and design models [5,7,8] but, thus far, we 
only used a language called SDSL (Statecharts for Dynamic 
Systems Language) [4]. SDSL retains the look-and-feel of Harel’s 
statecharts but unlike Statecharts, SDSL can model dynamic 
constructs such as remote method invocation, component 
construction & destruction, late binding, introspection, or instance 
localization.  

SDSL was built by us with the primary goal of providing a 
dynamic language that can be simulated. We therefore built a 
simulation tool that takes SDSL specifications (as created 
graphically in IBM Rational Rose) to animate them. We then 
extended the simulator, called SDS Simulator, to accept external 
stimuli of the kind a real system is able to accept (i.e., user input). 
Figure 7 depicts the simulator during the simulation of the VOD. 

To test the simulation language we validated it on several real 
software systems (e.g., video-on-demand software system [2], 
OASIS). We then coupled the simulator with the execution of the 
real systems. In most cases, instrumenting the source code of the 
real systems was sufficient. The probes intercepted the external 
stimuli of the executing systems, translated them, and projected 
those stimuli onto the simulation of their models. We found it 
highly beneficial to use the simulation to ‘spy’ into the executing 
system to observe its behavior. Even without the differencer, we 
found it very useful to detect inconsistencies.  

The reflection and the differencer are not implemented yet although 
a crude prototype exists. The major issue we foresee is how to 
model the allowed differences (timing differences, count 
differences, and ordering differences) that may vary across 

applications and, even, within applications. We believe that we 
need to augment SDSL to include allowed differences into the 
model. The differencer would then use this information. 

We have applied the SDSL modeling and simulation capability (an 
earlier version) onto a self healing project [10] where the simulation 
modeled the system’s behavior and its healing activities. There we 
demonstrated that it is feasible to use a model as a decision maker 
for a deployed system. Our findings are preliminary but 
encouraging.  

It is future work to investigate how to incorporate the environment 
(context) into the model.  Also, we intend to investigate how well a 
system can manage itself based on model information (the model is 
an abstraction and may not provide all needed information for self 
management). 
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